Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 23
Filter
Add more filters










Publication year range
1.
Chemosphere ; 341: 140119, 2023 Nov.
Article in English | MEDLINE | ID: mdl-37690553

ABSTRACT

Metal contamination poses a significant threat to elasmobranchs, underscoring the need for targeted conservation approaches. The critically endangered Brazilian guitarfish, Pseudobatos horkelii, confronts an array of challenges, notably overexploitation, putting its survival at risk. Our study investigated the potential toxicity arising from arsenic (As), cadmium (Cd), mercury (Hg), and lead (Pb) contamination across various adult guitarfish tissues from southeastern Brazil. Serological stress indicators, nutritional metabolites, and creatinine, an organ function marker, were also assessed, and Selenium (Se) levels were also investigated for possible protective effects. Our investigation unveiled significant correlations between metal concentrations and the determined physiological markers, shedding light on potential adverse effects. Remarkably, six correlations were indicative of how Hg and Pb negatively impact hepatic metabolite assimilation, while As was shown to influence renal phosphorus dynamics, Cd to affect rectal gland phosphorus regulation, and Pb to influence creatinine production in muscle tissue. Furthermore, Se demonstrated protective properties against Cd, Hg, and Pb, suggesting a role in alleviating the toxicity of these elements. Despite probable protective Se influences, the detected elemental interactions still suggest potential for organ impairment. These findings gain heightened significance within the context of the cumulative stressors faced by the Brazilian guitarfish, with metal contamination exhibiting the capacity to erode this species resilience against both anthropogenic and environmental pressures, thereby disrupting systemic equilibrium and jeopardizing wild populations. By investigating the intricate balance between metal accumulation and physiological consequences, our study contributes with crucial insights into potential conservation strategy formulations towards pollution for this critically endangered elasmobranch species.


Subject(s)
Arsenic , Elasmobranchii , Mercury , Metalloids , Animals , Brazil , Ecotoxicology , Metalloids/toxicity , Cadmium/toxicity , Creatinine , Lead/toxicity , Arsenic/toxicity
2.
Chemosphere ; 340: 139835, 2023 Nov.
Article in English | MEDLINE | ID: mdl-37611776

ABSTRACT

Fluorescent lamps are hazardous materials, as they contain toxic elements, which may lead to environmental contamination. Therefore, assessing potential environmental impacts arising from inadequate lamp disposal is paramount. Studies addressing the Life Cycle Analysis (LCA) of end-of-life fluorescent lamps are, however, still scarce, and inappropriate lamp disposal remains a matter of concern, especially in developing and underdeveloped countries. In Brazil, fluorescent lamps are still used countrywide and are often inadequately discarded. However, studies assessing fluorescent lamp impacts and potential impact reduction through enhanced recycling are still scarce in the country, despite Brazil's size and high waste generation rates. Furthermore, Brazil's lamp recycling program is a recent measure and still falls short of the country's needs. Thus, this study aimed to assess potential environmental impacts of end-of-life fluorescent lamps in Rio de Janeiro, the second largest capital in Brazil, to the best of our knowledge, for the first time. Potential impact reductions due to higher recycling program adherence considering 5, 20, 80 and 100 % recycling rates were also assessed. The findings indicate that the impact categories most influenced by end-of-life lamps were terrestrial ecotoxicity, human non-carcinogenic toxicity, global warming potential, and fossil resource scarcity. Increased recycling rates, in turn, reduced the environmental impact potential for all evaluated categories, reaching an almost 90 % reduction in most categories when applying a 100 % recycling rate. The current national program target recycling rate of 20 %, however, already contributes to an average impact reduction of over 70 %, comprising a more viable national application rate and already significantly contributing to reduced impacts.


Subject(s)
Coloring Agents , Hazardous Substances , Humans , Brazil , Death , Environment
3.
Mar Pollut Bull ; 185(Pt B): 114367, 2022 Dec.
Article in English | MEDLINE | ID: mdl-36435023

ABSTRACT

Guanabara Bay (GB) is a highly contaminated estuarine system and an important fishing area in Southeastern Brazil. In this regard, knowledge concerning the association of certain contaminants in seafood to abiotic factors and human health risk assessments is still understudied. Therefore, this study aimed to quantify nine toxic elements in highly consumed crabs, shrimp, and squid, and associate the results with abiotic factors. A human health risk assessment was also performed. Our findings indicate that crabs are the main bioaccumulators. Transparency and depth were noteworthy for all three taxonomic groups. In general, contaminant concentrations were below the limits established by different international agencies, except for As, which was higher than the Brazilian limit (1 mg kg-1). However, the Hazard Index identified risks to consumer health for the ingestion of seafood. This study emphasizes the importance of jointly evaluating different toxic elements, for a more accurate health risk assessment.


Subject(s)
Metalloids , Public Health , Humans , Brazil , Estuaries , Seafood
4.
Article in English | MEDLINE | ID: mdl-36141460

ABSTRACT

Children are highly vulnerable to chemical exposure. Thus, metal and metalloid in infant formulas are a concern, although studies in this regard are still relatively scarce. Thus, the presence of aluminum, arsenic, cadmium, tin, mercury, lead, and uranium was investigated in infant formulas marketed in Brazil by inductively coupled plasma mass spectrometry, and the Target Hazard Quotients (THQ) and Target Cancer Risk (TCR) were calculated in to assess the potential risk of toxicity for children who consume these products continuously. Aluminum ranging from 0.432 ± 0.049 to 1.241 ± 0.113 mg·kg-1, arsenic from 0.012 ± 0.009 to 0.034 ± 0.006 mg·kg-1, and tin from 0.007 ± 0.003 to 0.095 ± 0.024 mg·kg-1 were the major elements, while cadmium and uranium were present at the lowest concentrations. According to the THQ, arsenic contents in infant formulas showed a THQ > 1, indicating potential health risk concerns for newborns or children. Minimal carcinogenic risks were observed for the elements considered carcinogenic. Metabolic and nutritional interactions are also discussed. This study indicates the need to improve infant formula surveillance concerning contamination by potentially toxic and carcinogenic elements.


Subject(s)
Arsenic , Mercury , Metalloids , Metals, Heavy , Neoplasms , Uranium , Child , Humans , Infant , Infant, Newborn , Aluminum/analysis , Arsenic/analysis , Arsenic/toxicity , Brazil/epidemiology , Cadmium/analysis , Carcinogens/analysis , Carcinogens/toxicity , Child Health , Food Contamination/analysis , Heavy Metal Poisoning , Infant Formula/analysis , Mercury/analysis , Metalloids/analysis , Metals, Heavy/analysis , Receptors, Antigen, T-Cell , Risk Assessment , Tin/analysis , Uranium/analysis
5.
Mar Pollut Bull ; 183: 114038, 2022 Oct.
Article in English | MEDLINE | ID: mdl-36029587

ABSTRACT

Titanium (Ti) is considered a contaminant of emerging interest, as it displays toxic potential and has been increasingly employed in everyday products, pharmaceuticals, and food additives, mainly in nanoparticle form. However, several knowledge gaps are still noted, especially concerning its dynamics in the water. In this context, this study aimed to quantify total Ti concentrations in highly consumed swimming crabs, squid, and shrimp from an important estuary located in southeastern Brazil. Ti concentrations were higher than those reported in most studies carried out worldwide. Animal length and weight, as well as, depth, transparency, dissolved oxygen, and salinity, significantly influence Ti concentrations in the animals. Human health risks were also noted after calculating a simulated exposure to titanium dioxide, especially considering the uncertainties regarding the effects of this element and the absence of regulatory limits.


Subject(s)
Brachyura , Water Pollutants, Chemical , Animals , Brazil , Estuaries , Food Additives , Humans , Oxygen , Pharmaceutical Preparations , Titanium , Water , Water Pollutants, Chemical/analysis
6.
Front Nutr ; 9: 857698, 2022.
Article in English | MEDLINE | ID: mdl-35571960

ABSTRACT

Infant formulas are the main nutritional source for infants when breastfeeding is not possible or recommended. The daily need for specific nutrients, such as essential minerals, in early stages of a child's life is high because of rapid infant growth and development, which impose metabolic flux increases on these pathways to support growth, physical activity, and defense against infections. In this context, this research aimed to determine macromineral and trace mineral contents in starting (phase 1) and follow-up (phase 2) infant formulas marketed in Brazil (n = 30) by inductively coupled plasma-mass spectrometry, calculate estimated daily intakes, and compare them to reference values regarding adequate intake and tolerable upper intake levels. The highest concentrations of macrominerals were observed in Ca, K, P, and Na, and trace minerals in Fe, Zn, Mn, and Cu. Certain homogeneity only to trace mineral contents was observed when analyzing inter-batch values from same manufacturers. In general, all phase 1 and phase 2 infant formula brands and batches met or exceeded Fe, Zn, Cu, Mo, and Se contents when compared to maximum limits established by Codex Alimentarius. In addition, Zn contents in eight phase 1 and in four phase 2 infant formulas were above the contents established by the tolerable upper intake level for children aged 0-6 and/or 7-12 months, respectively. These findings highlight the need to expand regular infant formula inspection concerning nutritional quality, as some composition aspects of these foods must be improved to follow international guidelines, since ideal requirements for infant formula composition, quality, and safety interfere in child development and adult health.

7.
Mar Pollut Bull ; 179: 113671, 2022 Jun.
Article in English | MEDLINE | ID: mdl-35468471

ABSTRACT

Metal contamination has never been assessed in Ampullae of Lorenzini. This study employed Rhizoprionodon lalandii, as an ecotoxicological model to investigate potential metal accumulation in Ampullae of Lorenzini jelly. No differences between sexes were observed regarding jelly metal concentrations at Rio das Ostras (RJ) or Santos (SP). Statistically significant correlations were noted between total lengths (TL) and condition factors and several metals at both sampling sites, demonstrating the potential for Chondrichthyan sensory capacity disruption and possible effects on foraging success. Maternal metal transfer to Ampullae jelly was confirmed. Rhizoprionodon lalandii is thus, a good model to assess Ampullae of Lorenzini contamination, as this electrosensory organ seems to be highly vulnerable to metal contamination.


Subject(s)
Metalloids , Sharks , Animals , Brazil , Ecotoxicology , Metals , Seafood
8.
Mar Pollut Bull ; 177: 113569, 2022 Apr.
Article in English | MEDLINE | ID: mdl-35334308

ABSTRACT

This study comprises a novel report on subcellular metal partitioning and metallothionein (MT) metal detoxification efforts in lesser numbfish (Narcine brasiliensis) electric ray specimens, as well as the first assessment on MT contents in any ray electric organ. Individuals sampled from an area in Southeastern Brazil affected by the Mariana dam rupture disaster were assessed concerning subcellular metal partitioning and MT metal-detoxification in the liver, gonads, electric organ and muscle of both adults and embryos. Yolk was also assessed when available. Relative total and heat-stable (bioavailable) metal and metalloid comparisons between adults and embryos in different developmental stages demonstrates maternal transfer of both total and bioavailable metals and significant MT associations demonstrate the detoxification of As, Ag, Mn, Ni, Cd, Co, Cu, Se and V through this biochemical pathway. Our findings expand the lacking ecotoxicological assessments for this near-threatened species and indicates significant ecological concerns, warranting further biomonitoring efforts.


Subject(s)
Disasters , Water Pollutants, Chemical , Animals , Brazil , Metals/metabolism , Torpedo/metabolism , Water Pollutants, Chemical/chemistry
9.
Biol Trace Elem Res ; 200(1): 402-412, 2022 Jan.
Article in English | MEDLINE | ID: mdl-33619638

ABSTRACT

Perna perna mussels, abundant throughout the Brazilian coast, are routinely applied as bioindicators in environmental monitoring actions due to their sessile and filter-feeding characteristics. In addition, they are noteworthy for their food importance, especially for coastal populations. In this context, the aim of this study was to investigate elemental contamination in commercially marketed and highly consumed P. perna samples from the highly impacted Guanabara Bay, Rio de Janeiro, Brazil. A total of 30 mussels were sampled, and elemental concentrations (As, Cd, Cr, Cu, Fe, Hg, Mn, Ni, Pb, Se, V, and Zn) were determined in adductor muscle samples by inductively coupled plasma mass spectrometry (ICP-MS). Human consumption risks were assessed by comparisons to Brazilian and international legislations. No significant differences between sex were observed for all analyzed elements. Even when analyzing only the adductor muscle, all mussel samples exceeded the Brazilian limit for Cr, while 12 samples exceeded the limit for Se. When compared to other regulatory agencies, As and Zn levels were higher than the limits set by China, New Zealand, and the USA. Estimated daily dietary intake values were not above limits imposed by the Food and Agriculture Organization of the United Nations/World Health Organization for any of the assessed elements, although it is important to note that only the adductor muscle was assessed. Therefore, continuous metal and metalloid monitoring in bivalves in the study region is suggested, as metal transport and bioavailability, especially in coastal estuaries such as Guanabara Bay, which are currently undergoing significant changes due to anthropogenic activities.


Subject(s)
Perna , Water Pollutants, Chemical , Animals , Brazil , Environmental Monitoring , Estuaries , Humans , Water Pollutants, Chemical/analysis
10.
Environ Pollut ; 288: 117784, 2021 Nov 01.
Article in English | MEDLINE | ID: mdl-34329051

ABSTRACT

It is widely recognized that apex predators, such as large sharks with highly migratory behavior, are particularly vulnerable to pollution, mainly due to biomagnification processes. However, in highly impacted areas, mesopredator sharks with resident behavior can be as vulnerable as apex sharks. In this context, this study evaluated cadmium (Cd), mercury (Hg), lead (Pb), and rubidium (Rb) concentrations, as well as the potentially protective effects of selenium (Se) and the behavior of two non-enzymatic biomarkers, metallothionein (MT) and reduced glutathione (GSH), employing the Atlantic nurse shark Ginglymostoma cirratum as a study model and compared the results with other resident benthic sharks, as well as highly mobile apex sharks. Muscle tissue samples from 28 nurse sharks opportunistically sampled from the Brazilian Amazon Coast were analyzed. Lower metal concentrations were observed for Pb, Rb and Se in the rainy season, while statistically significant correlations between metals were observed only between Hg and Cd and Pb and Se. Molar ratio calculations indicate potential protective Se effects against Pb, but not against Cd and Hg. No associations between MT and the determined metals were observed, indicating a lack of detoxification processes via the MT detoxification route. The same was noted for GSH, indicating no induction of this primary cellular antioxidant defense. Our results indicate that benthic/mesopredator sharks with resident behavior are, in fact, as impacted as highly mobile apex predators, with the traditional detoxification pathways seemingly inefficient for the investigated species. Moreover, considering the studied population and other literature data, pollution should be listed as a threat to the species in future risk assessments.


Subject(s)
Mercury , Sharks , Animals , Mercury/analysis , Metals , Oxidative Stress , Ships
11.
J Trace Elem Med Biol ; 68: 126813, 2021 Dec.
Article in English | MEDLINE | ID: mdl-34171581

ABSTRACT

BACKGROUND: Elasmobranchs are particularly vulnerable to environmental metal contamination, accumulating these contaminants at high rates and excreting them slowly. The blue shark Prionace glauca L. is one of the most heavily fished elasmobranchs, although information regarding metal contamination and detoxification in this species is notably lacking. METHODS: Blue sharks were sampled in the western North Atlantic Ocean, in offshore waters adjacent to Cape Cod, Massachusetts. Total and metallothionein-bound liver and muscle metal concentrations were determined by inductively coupled plasma mass spectrometry (ICP-MS), metallothionein detoxification and oxidative stress endpoints were determined by UV-vis spectrophotometry. RESULTS: Metallothionein detoxification occurred for As, Cd, Cs, Cu, Hg, Pb, Se, Ti and Zn in liver, and for As, Cd, Cs, Pb, Se, and Zn in muscle, while reduced glutathione defenses seem to be related to Co and Zn exposure. CONCLUSION: This is the first report for several metals (Ag, Co, non-radioactive Cs, Sb, Ti and V) for this species, which will aid in establishing baseline elemental data for biomonitoring efforts, health metrics, and conservation measures.


Subject(s)
Metallothionein , Sharks , Animals , Atlantic Ocean , Cadmium/analysis , Lead
12.
Mar Pollut Bull ; 168: 112472, 2021 Jul.
Article in English | MEDLINE | ID: mdl-34004480

ABSTRACT

This study comprises the first record of a juvenile Giant Devil Ray specimen for Rio de Janeiro, Southeastern Brazil, and its metal and metalloid contents. A scientometric assessment was also performed for the Manta and Mobula genera. Only five records were found, and only As, Cd, Pb, Hg, Pt, Pd and Rh have been assessed. All studies but one concerned human consumption. A significant knowledge gap on metal and metalloid ecotoxicology for mobulid rays is noted, indicating the emergence of a new field of research that th may be applied for wildlife conservation and management in response to anthropogenic contamination. Our study is also the first to provide Al, Cr, Cu, Fe, Mn, Sr, Ti, V and Zn contents for muscle, liver, brain and kidney for a mobulid ray and one of the scarce reports concerning As, Cd, Hg and Pb in muscle, liver and kidney.


Subject(s)
Elasmobranchii , Metalloids , Metals, Heavy , Animals , Brazil , Ecotoxicology , Environmental Monitoring , Humans , Metalloids/analysis , Metals/analysis , Metals, Heavy/analysis
13.
Chemosphere ; 265: 129066, 2021 Feb.
Article in English | MEDLINE | ID: mdl-33293049

ABSTRACT

Fish consumption and chronic exposure to low doses of mercury (Hg) seems to activate several molecular mechanisms leading to carcinogenic and/or teratogenic processes. However, Hg genotoxic effects on humans are not completely described. In the present study, we assessed cytogenetic damage in isolated human peripheral lymphocytes using the cytokinesis-block micronucleus cytome assay (CBMN-Cyt), micronucleus formation with anti-kinetochore antibody (CREST staining), levels of total Hg in hair (T-Hg), fish consumption, and estimated Hg dose. The study comprised 39 non-exposed, and 73 residents from La Mojana region, an area with a well-documented Hg contamination. Data showed a significant increase in micronuclei (MNBN), nucleoplasmic bridges (NPB), and necrotic and apoptotic cell frequencies in residents of "La Mojana." The overall mean T-Hg level in hair for exposed residents was 1.12 ± 0.94 mg kg-1 and 0.15 ± 0.05 in individuals from the reference area. Approximately 40% of analyzed individuals showed T-Hg levels that exceeded US Environmental Protection Agency (USEPA) reference dose. Increased T-Hg levels in hair were related to increased MNBN frequencies and high fish consumption. Other cellular markers, such as necrotic and apoptotic cell frequencies, were also correlated with high fish intake and T-Hg contents. Results of the CREST staining demonstrated that in vivo exposure to Hg induces genetic instability by chromosome fragment loss (clastogenic). Additionally, a high average intake of some fish species, particularly with carnivorous habits like Caquetaia kraussii, Hoplias malabaricus, and Sorubin cuspicaudus, seems to increase MNBN frequencies significantly.


Subject(s)
Mercury , Animals , Colombia , Cytogenetic Analysis , Dietary Exposure , Environmental Exposure/adverse effects , Environmental Exposure/analysis , Fishes , Humans , Mercury/analysis , Mercury/toxicity
14.
Ecotoxicol Environ Saf ; 171: 781-789, 2019 Apr 30.
Article in English | MEDLINE | ID: mdl-30660971

ABSTRACT

Contaminants of emerging concern have become an important environmental problem, especially pharmaceutically active compounds (PhACs), since, after use, these drugs return to the environment, contaminating aquatic ecosystems. Some may display the ability to bioaccumulate and biomagnify throughout the food chain, leading to potential environmental and human deleterious effects which are, however, still largely unknown. In this context, the aim of the present study was to evaluate the effect of two psychotropic drugs commonly found in the environment, carbamazepine (CBZ) and clonazepam (CZP), both isolated and co-administrated, on oxidative stress biomarkers and essential metal homeostasis in Danio rerio fish specimens. No studies are available to data in this regard concerning CZP effects on fish. Reduced Glutathione (GSH), Metallothionein (MT), Catalase (CAT) and Glutathione S-Transferase (GST) were determined, as well as essential metals in fish liver, kidney and brains. Significant oxidative stress effects were observed for several biomarkers, where brain GST activity was the most affected, mainly with regard to CBZ exposure, while GST and CAT activity in the liver were downregulated in the co-administration mixture. In addition, dishomeostasis of several essential elements was detected in all analyzed organs, with a synergistic action of CBZ and CZP in brain, decreasing basal Mg, Al, K, Fe, Co, Ni and Cu levels in this organ, the target site for these drugs in humans. The brain organ was the most affected as observed by altered GST activity and metal dyshomeostasis concerning exposure to both compounds. These compounds, thus, present health risks to the aquatic biota, due to the evidenced deleterious effects and their constant release into the environment due to widespread use. Steps are needed to implement adequate legislation for risk analysis and decision-making in order to mitigate the effects of these emerging contaminants on aquatic ecosystem health.


Subject(s)
Carbamazepine/toxicity , Clonazepam/toxicity , Metals/metabolism , Oxidative Stress/drug effects , Psychotropic Drugs/toxicity , Water Pollutants, Chemical/toxicity , Animals , Biomarkers/metabolism , Brain/drug effects , Brain/metabolism , Catalase/metabolism , Glutathione/metabolism , Glutathione Peroxidase/metabolism , Glutathione Transferase/metabolism , Kidney/drug effects , Kidney/metabolism , Liver/drug effects , Liver/metabolism , Metallothionein/metabolism , Zebrafish/metabolism
15.
Environ Pollut ; 242(Pt A): 470-479, 2018 Nov.
Article in English | MEDLINE | ID: mdl-30005259

ABSTRACT

Chemical pollution is a growing issue for ocean ecosystems, threatening especially apex predators because they bioaccumulate persistent chemical pollutants such as non-essential trace elements. The trophic position is thus a key aspect when assessing the impacts of environmental pollution in marine organisms. Here we investigate the differences in the concentrations of essential (Cu, Cr, Se, and Zn) and non-essential elements (Hg, Al, As, Cd, and Sr), in muscular and hepatic tissues of four sympatric non-migratory seabirds (namely Sula leucogaster, Larus dominicanus, Fregata magnificens, and Thalasseus acuflavidus), which were found stranded along the Brazilian coast. The observed hepatic and muscular interspecific differences in elemental concentrations indicated that these sympatric seabirds are differently exposed to persistent contaminants circulating in the food web due to differences with respect to known feeding behaviours and prey preferences. Moreover, we found a consistent co-accumulative relationship between Se and Hg molar levels in liver tissues with mean Se:Hg molar ratio above 1. This relationship supports previous studies indicating that Se, via the formation of SeHg complexes, plays an essential biochemical role in the detoxification process of methyl mercury in seabirds. Our results suggest that feeding behaviour is an important factor associated to the interspecific differences of trace element concentrations in seabirds. However, traits other than feeding preferences (e.g. age) may also play an important role in the accumulation of these elements.


Subject(s)
Birds/metabolism , Environmental Monitoring , Trace Elements/metabolism , Water Pollutants, Chemical/metabolism , Animals , Brazil , Ecosystem , Food Chain , Liver/chemistry , Mercury/analysis , Methylmercury Compounds , Muscles/chemistry , Trace Elements/analysis , Water Pollutants, Chemical/analysis
16.
Bull Environ Contam Toxicol ; 98(1): 84-90, 2017 Jan.
Article in English | MEDLINE | ID: mdl-27878611

ABSTRACT

To assess environmental contamination, studies have been increasingly carried out using biomarkers to diagnose the effects of toxic metal exposure, such as metallothionein (MT). In this context, the aims of the present study were to determine Cd, Cu, Ni and Pb concentrations, by ICP-MS, in liver samples from Mugil cephalus from the municipality of Ilhéus, located in North-Southeastern Brazil, in the state of Bahia, which has been increasingly suffering from anthropogenic pressure, and to quantify total MT in liver and gills. Among essential metals, copper (199.2 µg g-1) presented concentrations approximately 7 times higher than allowed by the World Health Organization (30 µg g-1). Liver samples showed higher concentrations than gills. Metallothionein concentrations indicate differential contamination along the study area. The first sampling showed higher induction of MT synthesis overall. Differences between liver and gill MT concentration trends were relatively minor, which may indicate the adequacy of analyzing gills in an environmental monitoring context.


Subject(s)
Bays/chemistry , Environmental Monitoring , Metallothionein/analysis , Metals, Heavy/analysis , Smegmamorpha/metabolism , Water Pollutants, Chemical/analysis , Animals , Biomarkers/analysis , Brazil , Cadmium/analysis , Copper/analysis , Gills/chemistry , Lead/analysis , Liver/chemistry , Nickel/analysis
17.
J Trace Elem Med Biol ; 34: 70-8, 2016 Mar.
Article in English | MEDLINE | ID: mdl-26854248

ABSTRACT

Metallomic studies regarding environmental contamination by metals are of value in elucidating metal uptake, trafficking, accumulation and metabolism in biological systems. Many proven bioindicator species, such as bivalves, have not yet, however, been well-characterized regarding their metalloprotein expression in response to environmental contaminants. In this context, the aim of the present study was to investigate metalloprotein expressions in the thermostable protein fraction of muscle tissue and digestive glands from mussels (Perna perna) from three differentially metal-contaminated sites in Southeastern Brazil in comparison with a reference site. The thermostable protein fractions were analyzed by SDS-PAGE and SEC-HPLC-ICP-MS. Metal content was also determined in both the crude and the purified extracts. Several inter-organ differences were observed, which is to be expected, while inter-site differences regarding thermostable protein content were also verified, indicating accumulation of these elements in muscle tissue and digestive glands and disruption of homeostasis of essential elements, with detoxification attempts by metal-bound proteins, since all metalloproteins present in both matrices eluted bound to at least one non-essential metal. These results are also noteworthy with regard to the adopted reference site, that also seems to be contaminated by toxic metals.


Subject(s)
Environmental Monitoring/methods , Metalloproteins/analysis , Perna/metabolism , Water Pollutants, Chemical/analysis , Animals , Brazil
18.
Mar Pollut Bull ; 95(1): 402-6, 2015 Jun 15.
Article in English | MEDLINE | ID: mdl-25858662

ABSTRACT

With less than 60 records being reported worldwide, the megamouth (Megachasma pelagios) is today one of the least known shark species inhabiting our oceans. Therefore, information concerning the biology and ecology of this enigmatic organism is very scarce and limited to feeding behaviour and preferred habitat. The present work reports new data on the concentrations of trace elements, organic mercury, POPs and (210)Po in hepatic and muscular tissues of a specimen found stranded in the southeastern coast of Brazil. Additionally, we provide new evidence based on stable isotope analysis (δ(15)N and δ(13)C) confirming the preference for the pelagic habitat and the zooplanktivorous feeding behaviour of the megamouth. These results are consistent with the low concentrations of organic pollutant compounds and other elements measured in our samples.


Subject(s)
Polonium/analysis , Sharks/physiology , Water Pollutants, Chemical/analysis , Animals , Brazil , Carbon Isotopes/analysis , Ecosystem , Feeding Behavior , Mercury/analysis , Nitrogen Isotopes/analysis , Organic Chemicals/analysis , Sharks/genetics , Trace Elements/analysis , Water Pollutants, Chemical/pharmacokinetics
19.
Mem Inst Oswaldo Cruz ; 109(4): 420-7, 2014 Jul.
Article in English | MEDLINE | ID: mdl-25075781

ABSTRACT

Meglumine antimoniate (MA) and sodium stibogluconate are pentavalent antimony (SbV) drugs used since the mid-1940s. Notwithstanding the fact that they are first-choice drugs for the treatment of leishmaniases, there are gaps in our knowledge of their toxicological profile, mode of action and kinetics. Little is known about the distribution of antimony in tissues after SbV administration. In this study, we evaluated the Sb content of tissues from male rats 24 h and three weeks after a 21-day course of treatment with MA (300 mg SbV/kg body wt/d, subcutaneous). Sb concentrations in the blood and organs were determined by inductively coupled plasma-mass spectrometry. In rats, as with in humans, the Sb blood levels after MA dosing can be described by a two-compartment model with a fast (t1/2 = 0.6 h) and a slow (t1/2 >> 24 h) elimination phase. The spleen was the organ that accumulated the highest amount of Sb, while bone and thyroid ranked second in descending order of tissues according to Sb levels (spleen >> bone, thyroid, kidneys > liver, epididymis, lungs, adrenals > prostate > thymus, pancreas, heart, small intestines > skeletal muscle, testes, stomach > brain). The pathophysiological consequences of Sb accumulation in the thyroid and Sb speciation in the liver, thyroid, spleen and bone warrant further studies.


Subject(s)
Antimony/analysis , Antiprotozoal Agents/pharmacokinetics , Meglumine/pharmacokinetics , Organometallic Compounds/pharmacokinetics , Animals , Antiprotozoal Agents/administration & dosage , Dose-Response Relationship, Drug , Male , Meglumine/administration & dosage , Meglumine Antimoniate , Organometallic Compounds/administration & dosage , Rats, Wistar , Time Factors , Tissue Distribution
20.
Mem. Inst. Oswaldo Cruz ; 109(4): 420-427, 03/07/2014. tab, graf
Article in English | LILACS | ID: lil-716312

ABSTRACT

Meglumine antimoniate (MA) and sodium stibogluconate are pentavalent antimony (SbV) drugs used since the mid-1940s. Notwithstanding the fact that they are first-choice drugs for the treatment of leishmaniases, there are gaps in our knowledge of their toxicological profile, mode of action and kinetics. Little is known about the distribution of antimony in tissues after SbV administration. In this study, we evaluated the Sb content of tissues from male rats 24 h and three weeks after a 21-day course of treatment with MA (300 mg SbV/kg body wt/d, subcutaneous). Sb concentrations in the blood and organs were determined by inductively coupled plasma-mass spectrometry. In rats, as with in humans, the Sb blood levels after MA dosing can be described by a two-compartment model with a fast (t1/2 = 0.6 h) and a slow (t1/2 >> 24 h) elimination phase. The spleen was the organ that accumulated the highest amount of Sb, while bone and thyroid ranked second in descending order of tissues according to Sb levels (spleen >> bone, thyroid, kidneys > liver, epididymis, lungs, adrenals > prostate > thymus, pancreas, heart, small intestines > skeletal muscle, testes, stomach > brain). The pathophysiological consequences of Sb accumulation in the thyroid and Sb speciation in the liver, thyroid, spleen and bone warrant further studies.


Subject(s)
Animals , Male , Antimony/analysis , Antiprotozoal Agents/pharmacokinetics , Meglumine/pharmacokinetics , Organometallic Compounds/pharmacokinetics , Antiprotozoal Agents/administration & dosage , Dose-Response Relationship, Drug , Meglumine/administration & dosage , Organometallic Compounds/administration & dosage , Rats, Wistar , Time Factors , Tissue Distribution
SELECTION OF CITATIONS
SEARCH DETAIL
...